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ABSTRACT 

Same steady-state solutions are obtained f o r  thermal and for shear- 
I 

flow turbulence by expanding two-point nonlinear correlation equations i n  I 

power series i n  the space variables. The correlation equations, which 

are fo r  inhomogeneous turbulence, are constructed from the Navier-Stokes 

and energy equations. To make the problem determinate, the weak- 

turbulence approximation is used. Steady-state solutions are possible 

because of the  presence of nonlinear production terms in the  correlation 

equations. Because only the  low-order terms are retained i n  the power 

ser ies  used i n  the expansions, t he  solutions are accurate only f o r  small 

values of the  space variables, and specific boundary conditions cannot be 

applied. The forms of the solutions show tha t  c r i t i c a l m l u e s  of parame- 

ters (similar t o  Rayleigh or  Reynolds numbers) exis t  below which the t u r -  

bulent fluctuations a re  zero. The main conclusion of the  study is that 

the Navier-Stokes and energy equations (averaged f o r  turbulent flow) can 

yield solutions i n  which the energy fed in to  a turbulent f i e l d  

ancy or shear forces i s  equal t o  that dissipated by Viscosity. 

ll"R0DUCTION 

Most of the analyses based on s t a t i s t i c a l  turbulence theory have 

been made for  a decaying turbilence t h a t  is i n i t i a l l y  generated by exter- 

nal means, as by flow through a Sustained turbulence, such as 



t ha t  produced by shear a r  buoyancy forces, has generally been investiga- 

ted  by using a phenomenological a p p r o ~ h , ~ - ~  or by using simplified equa- 

t ions  in place of the equations fo r  the r e a l  f luide8 S t a t i s t i c a l  methods 

have also been used f o r  sustained turbulence,4*5fg but the work i s  gener- 

ally l i m i t e d  t o  one-point correlation equations that by themselves do not 

lead t o  solutions, although they a r e  of considerable schematic value. 

The work done t o  date offers  l i t t l e  evidence that the Navier-Stokes 

and energy equations ei ther  are, or are not, capable of yielding solu- 

t i ons  fo r  steady-state turbulence. Studies of the effect  of a uniform 

velocity gr-entl' 

forceu on an initially isotropic turbulent f i e l d  indicate that i n  those 

cases, although energy can be fed into a turbulent f i e l d  by shear or 

buoyancy forces, the energy fed i n  is less than tha t  dissipated, and the 

turbulence decays with t i m e .  If it were not f o r  the abundance of sus- 

tained turbulent flows in nature, one might, on the basis  of the available 

solutions, be led  t o  the conclusion t h a t  steady-state turbulence w i l l  not 

OCClxr. 

of a m o m  temperature gradient ana b w  

The present study i s  an atteqt t o  provide evidence tha t  the Navier- 

Stokes and energy equations in averaged form can yield solutions f o r  

steady-state turbulence. The work is  based on generalized two-point cor- 

re la t ion  equations tha t  are constructed from the Navier-Stokes and energy 

equations by methods similar t o  those used by von K&m& and H a r a r t h  f o r  

isotropic turbulence.' To make the problem determinate, the weak turbu- 

lence approximation ( t r i p l e  correlations neglected) i s  used. 

imation was also used by von K&dn and Howarth fo r  the case of l o w  

This approx- 
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Reynolds number turbulence. Although the e r o x i m a t i o n  might be con- 

sidered somewhat restr ic t ive,  it appears t o  be the only reasonable basis 

of asalysis, d e s 8  three- or  four-point correlation equations are  con- 

s i d e r e b 3  Moreover, since we are stUayin@; sustained turbulence, w e  are 

more interested i n  the production terms in the equations than in the 

transfer  terms. (In the  case of shear-flow turbulence the velocity gra- 

dient causes energy transfer between wave nunhers even when t r i p l e  cor- 

re la t ions .we neglected. ''> 
Sustained turbulence i s  essentially a nonlinear phenomenon. m e  

nonlinear character of the two-point correlation equations is made evi- 

dent When the mean temperatures ox velocit ies are eliminated by intro- 

ducing one point correlation equstions into the l awpoin t  correlation 

equations. Plane heat transfer ana she= layers a re  considered. The 

correlation equations are expasded in power ser ies  in the space varia- 

bles  t o  obtain algebriac expressions for the correlations. Because only 

the low-order terms are retained i n t h e  series, the solutions a r e  accu- 

r a t e  only for mall. values of the space variables. 

The case of sustained thermd. tmbuleme w i l l  be considered in the 

next section, af'ter which sustained shear-flm turbulence w i l l  be taken 

ug* 

sIG"Ei) TEEEM& TuRB-m 

The term thermal turbulence as used here designates turbulence tha t  

i s  sustained by buoyance forces arising from temperature gradients and a 

body force. 

f ield by buoyancy forces just balances that dissipated by Viscous act ion,  

Far steady-state turbulence, the energy fed into the  turbulent 
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Correlation Equations 

Two-point correlation equations for homogeneous turbulence with a 

body force and a temperature gradient are can*ted from the Navier- 

Stokes snd energy equations in reference ll. H e r e  only the  modifications 

necessary for inhone6geneous turbulence w i l l  be considered. From refer- 

ence ll the correlation between velocity coxponents at two points is 

I where the overbars indicate averaged value& 

the values 1, 2, op 3, and a repeated s a s c r i p t  in a term indicates a 

surmnation. The quastity u i  is  an instantaneous velocity conrponent, x i  

snd xi 

The subscripts can W e  M 

1 
axe space coordinates a t  the points P and PI, t is the t i m e ,  

p is the density, y is the kinematic viscosity, p i s  the instantaneous I 
pressure, g i  

psst of the instantaneous teqperature, and 

coefficient defined by p = - (l/p)(a~/aT)~. For inhcmogeneaus turbu- 

lence it is convenient t o  introduce the miales  rk  s x i  - xk 

is a c q o n e n t  of the body force, T is  the  fluctuating I 
f3 IEI the thend. expsndon 

~ n a  

I 
(Xk)m 1/2 (xk + X i )  (See 1)s Then (1) b = m S  
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where the following transformations w e r e  used: 

Equation (2)  reduces t o  the E6rdn-HaTarth equation' i f  the turbulence i s  

homogeneous and body forces a re  absent. 

In  a similar way the following equations are obtained. 

~ Pressure-velocity correlations: 

Temperature-velocity correlations: 
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L 

Temperature-temperature correlations: 

c 1 

where T i s  the mean temperature and a is  the thermal diffusivity.  

These equations reduce t o  Eqa. (i'), (9), (15), and (19) of reference ll 

if  the turbulence i s  hmgeneous. 

them with Eqs. ( 5 ) ,  ( 7 ) ,  and (8) of reference 10. 

It i s  a l s o  of in te res t  t o  compese 

Assume now tha t  the only nonzero component of 2 is  i n  the negative 

ve r t i ca l  direction, and l e t  

g3 g r -  ( 7 )  
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Also, l e t  the temperature gradient be i n  the ver t ica l  direction so tha t  

it i s  given by aT/ax3. 

zontal  planes, and ver t ica l  axes w i l l  be axes of symmetry. 

The turbulence can then be homogeneous i n  hori- 

Let 

If the turbulence i s  weak enough for t r i p l e  correlations t o  be neglected 

and if we l e t  i = j = 3 i n  Eqs. ( 2 )  t o  ( 6 ) ,  

r 



I n  order t o  eliminate the man tenperatme gradient from the pre- 

ceding tvo-point correlation equat ions aad t o  eqph&,ze their nonuneaS 

character, we obtain a one-point correlation equation by sbust i tut i rg  

Fq. (5) in to  (U> of reference U. and by averaging. This gives 

a2T =a- - + -  aT a% 
a t  axk 

In  the remainder of the section we will be concerned only w i t h  the steady- 

s ta te  case. Also, since the correlations change only i n  the x di- 

rection, Eq. (14) becomes 
3 

where 

tion. The quantity k i s  the thermal conductivity. The temperature 

q3 i s  the heat transfer per u n i t  area and is  independent of posi- 

gradient at point P is then given by 

and t h a t  a t  point P' i s  given by 

Substitution of Eqs. (16) and (17) into the two-point correlation 

Eqs. ( 9 ) ,  (lo), and (ll) gives, for the  steady-state case, 
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- 
0 = u'u' 3 3  

+ (Y' 

r 7 

4- (a+ V) 

Eqs. (18, (19), .and (20) together with Eqs. (12) and (13) form a d e x r -  - - - 
minate set. (Note tha t  m3 aod T'U; are special cases of TU;.) 

Inspection of the equations shows tha t  one possible solution i s  given 

when the correlations are all zero. In tha t  case no turbulence w i l l  

occur and the heat t ransfer  will be ent i re ly  by conduction. 
tr 

We would 

expect that if  the f lu id  is heated from beluw (positive 

i n  addition, by a nonzero solution, inasmuch as experiment indicates 

q3) there will, 

t ha t  turbulence can be s e t  LQ for t h a t  case. Also, the presence of the 
--- - -- 

nonlinear term u3ui 7u3, mi(-?) m3, and m i  'rlui in Eqs. (19) 

and (20) leads us t o  suspect that nonzero solutions exist. If those 

terms were not present, the no-turbulence solution would in general, be 
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the only pertinent solution; the equations i n  that case would be l inear  

and homogeneous. I n  the next section the possibi l i ty  of turbulent solu- 

t ions  of the steady-state correlation equations fill be investigated by 

expanding them in power series. Before doing that, however, it is con- 

vexlent t o  convert them t o  dimensionless form by i n t rduc ing  the follow- 

ing dimensionless variables: 

where A i s  a typical  microscale of the turbulence- The microscale I s  

used as a length because it is  defined in  terms of the shape of the cor- 

re la t ion  curve fo r  small values of the space variables, and the solutions 

t o  be obtained are accurate only f o r  small values of those variables- 

The quantity Nt 

and i s  somewhat similar t o  a Rayleigh nlmiber. 

Eqs. (12) and (13) become, i n  dimensionless form, 

i s  a determining parameter for the thennal turbulence 

Eqs. (18) t a  (20) and 
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Series Expansions 

The plan now i s  t o  expand each correlation i n  Eqs. (21)  t o  (25) in 

a power series i n  

t i a l  equations, and t o  equate the coefficient of each power of 

zero. This gives a set of partial d i f fe ren t ia  equations that does not 

contain E*. 

panded i n  a series i n  

do not contain r:. Finally, expansion i n  (x3)E eliminates tha t  varia- 

ble, and we end up with a set  of algebraic equations tha t  can be solved 

simultaneously t o  obtain values for the  correlations. 

E*, t o  substitute the series in to  the p a r t i a l  differen- 

g* t o  

Each dependent variable i n  those equations i s  then ex- 

* 
r3 t o  obtain ordinary di f fe ren t ia l  equations that 
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I n  the present analysis we w i l l  consider only equations obtained by 

se t t ing  the coefficients of E*', r3 *o , r3 *1 , ( x ~ ) ~  *o , and (x3)g1 equal t o  

zero. 

of those variables and will approach an exact solution only as 

and (xs)E approach zero. 

Thus the solution obtained w i l l  be a c c k a t e  only f o r  small values 

e*, r:,' 

We w i l l  not  be able t o  accurately apply 

I boundary conditions tha t  s ta te ,  for  instance, tha t  a correlation i s  zero 

at given points i n  

since, i n  general, E", etc. will not be mall at the points the boundary 

conditions a re  applied. I n  l i e u  of boundary conditions we will introduce 

microscales that depend only on the shapes of the correlation curves near 

E", r:, (x3) i  space (e.go, at walls or  at  so), 

their origins. 

which the inscribed parabola at the origin of a correlation curve goes to 

zero,2,4 For the law Reynolds numbers considered here ( f ina l  period fo r  

decaying turbulence), the microscale of the turbulence d i f f e r s  but 

slightly from the macroscale.3 The microscales used here are, i n  some 

As defined by Taylor, a microscale i s  the distance a t  

cases, slight generalizations of the usual concept inasmuch as we include 

microscales associated with ( x ~ ) ~  as well as with E and r3* We W i l l  

also consider microscales for  the case where the slop of the correlation 

curve a t  its origin i s  not z e m  In the Latter case a t h i rd  degree rather 

than a second degree curve is inscribed i n  the correlation curve at  its 

origin. 

The various correlations will, i n  general, have different microscales- 

For the sake of definiteness, they w i l l  here be a rb i t r a r i l y  taken as equal 

i n  m o s t  cases and w i l l  3e 5es iaa ted  by A. (The A used here i s  twice 

the usual microscale.) I n  order t o  obtain the actual re la t ion between 
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the microscales fo r  specific boundary conditions (wfiich we are  not spec- 

ifying here), it would be necessazy t o  consider higher-order expasions 

af' the correlation equations. The present analysis, however, should be 

adequate for determining whether or not reasonable solwbions of' the  cor- 

re la t ion  equations exist f o r  steady-state turbulence, Let 
- * -  - 
u 3 4  = (U3U& i- (U3U& 5*2 . * 

Pu; = (Pd& d- (PU& E*2 
- * -  - 

where the barred quantit ies i n  parenthesis we 

(U~U;)O, f o r  instance,  i s  the value of (u3ui ) 
* - - independent of E*. Then - 

f o r  E* = 0, and ( U ~ U ~ ) ~  

omitted i n  these expressions because of symmetry. By using a Taylor * 
series we can write 7u3 and T'U; in Eqs. (22) and (23) as (Fig. 1) 

-* 

* - * - * * where ( T - $ ) ~ ~  i s  the vaiue of $ 
s%itutiag Eqs, (26) t o  (28) i n  Eqs. (21) t o  (25)  and setting the coef- 

f i c i e n t  of 6 equal t o  zero i n  each equation give 

at (x31m f o r  E* = r3 = 0. sub- 

*O 
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o=("3u~,o 5 - P r  - t  
l a  - -  
ab,)* m 
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As menkioned previously, i n  order t o  obtain def ini te  resu l t s  we arbi- 

t r a r i l y  assume tha t  the  microscales f o r  the correlations a re  equal t o  

Thus, i n  Eqs. ( 2 6 )  l e t  

E* = E/?, = 1. 

A. 
- - - -  
u3ui = pui = TUQ = TT' = .p' = 0 f o r  

(Note that the  actual correlations are not zero at those 

points, but only the  inscribed parabolas given by Eqp. (26) .  ) 

(x)2, (q)2, ( 7 ) 2 ,  ( p u ~ ) ~ ,  and (7p')Z i n  Eqs. (29) t o  (33) are re- 

placed respectively by -(u3u;)*, -(TU;),, --(TT'),, -(pu;),, and -(T)o. 
(If the  microscales a re  not taken as equal, (U~UQ)~, fo r  instance, would  

Then 
- - 
- - - 

- 
equal a negative constant times ( U ~ U ~ ) ~ . )  - 

N e x t ,  l e t  

(34) 
- - (+u;l0 = ( 'u j lo0 + (TU') 

(F), = (T)oo + 

r* + (mi)o2 rz2 + (7) r*3 
301 3 303 3 

r: + ( 7 l O 2  r:' + (TT')03 r:3 
- - 
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Substituting Eqs. (34) in to  Eqs. (29) t o  (33) and se t t ing  the coefficient 

of rSo and of r:' i n  each equation equal t o  zero give (with 

(x)2 = -(s)o, etc.)  a se t  of ordinary d i f fe ren t ia l  equations i n  

(x31z. ~n EQS. (34) we l e t  (Gqo, (%lo, etc. equal o fo r  r: = +I 
- - - 

t o  0bI-ai.n (=a&) = - ( ~ o o ,  ( S I o 3  = -(s)ol, (Puj)02 = -(Puj)m, 02 

The quantities (s)oo, etc. can be e-xpanded as follows: 

- 
The odd powers of (x3)* a r e  omitted i n  the expressions f o r  ( U ~ U - ~ ) ~ ~ ,  

(q)oo, and ( T T ' ) ~  i n  order t o  make t.hose one-point correlations sym- 

metric about (x3)* = 0. 

ent ia1 equations i n  (x3)* (not shown) and set t ing the coefficients of 

(x3)& equal t o  zero give (with (u  u ' )  = -(u') 

m - 

Substituting Eqs. ( 3 5 )  in to  the ordinary differ- 
m 

m - 
e tc . ) .  

m 3 0 2  "3 3 m' 

I 
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- 
To set the microscales associated with (x3) 

(pui),, etc.  in Eqs. (35)  equal zero when (x3)* = +1/2. 

(x3)* = +1/2 

ence between the  definit ion of (x3) and that of r3 or 5 .  See 

equal t o  A, l e t  ( U ~ U ~ ) ~ ,  m - 
(We use 

m 
instead of +1 as i n  the other cases, because of the differ- 

m 

m 

- - 
= - 4 ( p ~ i ) ~ ~ ~ ,  etc. With these relat ions,  Eqs. (36) t o  (50) form 

a determinate set of algebraic equations that can be solved simultaneously. 

Equations (a), (48), and (41) show that 

From Eqs. (42) ,  (45), and (36), 

Combining Eqs. (43), (46), and (49) gives 

F r o m  Eq. (38) 

3 000 1 P r ( 7 )  1 (54) 
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Finally, Eqs. (43), (46), (52) t o  (54) and (37) combine t o  give 

where 

and 

Note that the  or iginal  (3 
equation having come from Eq. (lo), the  eqmtion f o r  

of Eq. (55). 

is the  value of m3 f o r  

t ions were nonlinear i n  (mi) 

i n  t h e  l inear  terms of Eq. (37) (that 
- 3000 
TU;) canceled out 

However, Eq. (55) still yields values f o r  (7x4) ooo, which 
- 

- 
6 P r3 = ( ~ 3 ) ~  = 0, because the or iginal  equa- 
- 

000. 

Positive values of % correspond t o  negative temperature gradients 

(heating from below), and turbulent solutions should exist f o r  suffi- 

cient ly  high values of Y t .  Xquation (55) was solved f o r  Pr = 0.7 

(corresponding approximatefy t o  gases) and f o r  several values of 

As N t  

posit ive at Nt = 88.1. Thus t ha t  value of Nt can be thought of &I; a 

c r i t i c a l  IT, above which turbulence might occur. For Nt = 100, 

(q) = 26.4, and f o r  % = 200, (TU;) = 251. From Eqs. (52) t o  

(54), for  

mt. 
increases, (q) , as w e l l  as the other correlations, becomes 

- 
000 000 - 

= 1@0, ( U ~ ~ ~ ) o m  = 2-89 and ( T T ' ) ~ w  = 287, a d  for 
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% = 200, (u.p3)ooo 7 = 27.3 and ( T T ' ) ~ ~ ~  = 2,414. Thus t he  correlations 

have the  correct signs and t h e  correct trends as 

c r i t i c a l  value. For values of Nt below the  c r i t i c a l  value, including 

negative 

rS, increases above i ts  

% (positive temperature gradient), t he  correlations become 
I 
I 

negative according t o  Eqs. (52) t o  (54), so that those equations do not 

yield possible solutions. I n  t h a t  case we should use the other solution 

of Eqs. (21) t o  ( 2 5 ) ,  that is, the no-turbulence solution. Note that 

above the c r i t i c a l  both the turbulent and the nonturbulent solutions 

are possible according t o  the  equations; consequently, the f l u i d  is not 

necessarily turbulent fo r  all values of Nt above the c r i t i c a l  value 

consiaered here. 

One other quantity that should be considered is the  eddy diffusivi ty  

f o r  heat transfer Eh, which is  defined as 
- - 

T'3 - T'3 Eh % - 
Tu3 - - -  

k U 

I n  dimensionless form, a t  (x,)" = 0, 
m 

From the  preceding computed results, Eh 

Nt 

is posit ive and increases as 

increases above i t s  c r i t i c a l  value so that the  values obtained for  

E h  are also reasonable. 

It might again be mentioned t h a t  t he  preceding solutions are for  the 

case where  t he  microscales are all equal. Thus the results probably do 

not correspond numerically t o  those for  par t icular  boundary conditions. 
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They are given here t o  indicate that reasonable solutions for steady- 

state turbulence can be obtained *om t he  correlation equations. 
- 

and even for unequal micro- 000 
is of the  form 

Equation (55) is  quadratic in (mi)  

--T scales  the  solution for (3) 
000 

where a, b, etc. are functions of Prandtl number and the microscale 

ra t ios .  

those functions are probably slowly varying. ) 

Eq. (57) gives two values fo r  a c r i t i c a l  Kt ( for  given values of a, b, 

(The microscale r a t io s  might i n  turn be functions of X+-, but 

Sett ing (3) = 0 i n  

e tc . ) ,  but, of course, only one of those would be expected t o  be physically 

realizable. 

lms!wmm SHEAR-mow TmHJLJmm 

Correlation Equations 

General two-pint correlation equations f o r  incompressible turbulfS?rIt 

shear flow were obtained f’rom t h e  %vier-Stokes equations in reference 10 
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where u i  

Ui 

meanings as i n  the  equations in  the preceding sections. 

unprimed quantities are measured at point P and the  primed ones at PI. 

The vector configuration i n  Fig. l a p p l i e s  t o  the present equations. 

one-point equation given i n  reference 10 is  

is the fluctuating part o f  an instantaneous velocity component, 

is a mean velocity component, and t he  other quantities have t he  same 

As before, the 

A 

It is suggested i n  reference 10 that Eqs. (58) t o  (61), together with 

higher-order equations, shoUl2 constitute a solution t o  the turbulent 

shear-flow problem. 

here in. 

Further evidence that t h i s  is  the case is given 

I n  t h i s  analysis it is assumed that the  mean velocity is i n  the  x1 

direction and that changes i n  the  mean quantit ies can take place only i n  

the  x2 direction; consequently, we have plane shear layers. If the 



. 

turbulence is  xeak enough for  t r i p l e  correlations t o  be neglected and if 

w e  l e t  i = j = 2 i n  Eq. ( 5 8 ) ,  tha t  equation becomes 

and 

The one-point equation, Eq. (61), can be used t o  eliminate the  mean ve- 

loc i t i e s  from these equations. If the turbulence i s  stea.dy s t a t e ,  

Eq. (61)  becomes (for  the plane shear layers considered here with no mean 

pressure gradient) 
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or  

av, - T 

vzg 1 2 - p  - u u  - -  

where T 

bulent shear stress) and is independent of position. 

gradient at point P is  

is  the  t o t a l  shear s t ress  (made up of the  laminar and the  t u r -  

Then the  velocity 

and that at P' i s  

A t  a general p i n t  P", 

aV; 
- E -  * +-  
ax; PV 

Integrating Eq. (69) between P and P', t h a t  is, from (xz), - r2/2 

(xz), + r2 /2  (Fig. l), gives 

t o  

IJi - v, = - T r2 + ~ ( ~ 2 ) m + r 2 / 2  - u p ;  ax; (70) 
PV V 

(xz),-r2/2 

The subst i tut ion of Eqs. (67), (68), and.(70) in to  Eqs. (62) t o  (65) 

gives, f o r  steady-state turbulence, 

f.- 

1 h- a- 
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and 

Equations (71) t o  (74) form a determinate set .  A possible solution 

f o r  these equations is  that a l l  the correlations are zero, as was t he  

case f o r  the  equations f o r  thermal turbulence. 

exis ts  and the shear stress is produced by molecular action. 

mainly interested i n  turbulent solutions that might be possible because 

of the  nonlinear terms i n  the equations. 

In  t h a t  case no turbulence 

W e  are here 

/ 

O f  these nonlineer terms the 

f i r s t  tern of Eq. (71) and the  second t e r m  of Eq. (72) have been inter-  

preted” as Fourier transforms of transfer terms t h a t  t ransfer  energy 

between eddies of various sizes. 

tha t  is, the first term on the right side of Eq. (72)  and the  last terms 

i n  Eqs. (73) and (74), might be interpreted as production terms. Some of 

the nonlinear terms here a r e  more complicated than those f o r  thermal tur -  

bulence, where they Were a l l  simple products of correlations. 

The remainder of the nonlinear terms, 

The equa- 



t ions  can be written i n  dimensionless form by introducing the following 

dimensionless variables: 

where the microscale A is again used as a length scale because the 

solutions t o  be obtained are  accurate only f o r  small values of the space 

variables. The parameter N, is a determining parameter f o r  the shear- 

flow turbulence and has some similari ty t o  the square of a Reynolds nutn- 

ber. Equations (71) t o  (74) become, i n  dimensionless form, 

l a  a ------ 2 d(x2)+ ulp &; WE 
m 
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Series Expansions 

The expansion i n  power series of the  correlation equations f o r  shear 

flow is similar t o  that f o r  thermal turbulence. M o s t  of the discussion 

at the  beginning of the section "Series Expansions" f o r  sustained thermal 

turbulence therefore applies also t o  shear-flow turbulence. The main 

difference between the  two cases i s  that w e  had the  t h r e e  independent 

variables 

flow we have the  four variables 

there is no ax ia l  symmetry f o r  shear-flow turbulence as there was f o r  

5 ,  r3, and ( x ~ ) ~  fo r  the rma  turbulence, xhereas f o r  shear 

rl, r2, r3, and (x2)=. This is  because 

thermal turbulence. The final expanded correlations w i l l  then have four 

subscripts instead of three. As before, all of the microscales w i l l  at 

the beginning, f o r  t he  sake of definiteness, be assumed equal t o  A. I n  

the present case, however, it w i l l  be found necessary t o  later modify 

that assumption t o  obtain reasonable results. 

W e  w i l l  first obtain expressions f o r  the nonlinear t e r m s  in Eqs. 

(75) t o  (78) i n  terms of the  expanded correlations. The quantit ies 
4 
u1u2 and UiUk" can be expanded in a Taylor series t o  give, for  
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- 
is the value of ul$ at the point (%)* with 

where ( ~ o o o  m 

rg = r$ - I=: = 0. The quantity (y) i n  turn, can be expanded as 
2 000' 

is t he  value of for  (x2)* = r3 * = r; = rl * = 0. 

The odd poxere of (x2)i a re  omittea t o  make (- symmetric about 
1 2)ooo 

For a general point xz, 

Then 

Let  
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where the quantit ies in parenthesis are independent of r;, and ( ' S I o ,  
f o r  instance, is the  value of fo r  r: = 0. The odd powers of rs 

are omitted because of spumetry. 

(86) in to  Eqs. (75) t o  ( 7 8 )  and equating t o  zero the  coefficient of r:' 

i n  each equation give 

Substituting Eqs. ( 8 2 ) ,  (83), (85), and 



In  order t o  eliminate r$ from the correlation equations, l e t  
\ 

where, f o r  instance, (a)oo is t he  value of f o r  rg * rz 5 0. 

Substituting Eqs. (91) into (87) t o  (90) and equating ,to zero the  coeffi- 

cient of rp give, with ( U Z ~ ) ~  = -(s)O, etc . ,  a set of partial dif-  

f e r en t i a l  equations with independent variables r; and (xz)*. Setting 

the  microscales for ( I + U ~ ) ~ ,  (g),, (pu;),, and ( ~ , p ' ) ~  i n  Eqs. (91) 

equal t o  

f ind that (s)02 = -(7 U 2 4 0 0 ,  (u&)o3 = - ( X ) o 1 ,  ( q g o z  = -(qq)o(), 

- 

m - - - 
- 

h by l e t t i ng  (%u;)~, (g)o, etc.  = 0 fo r  r; = fl, we 
- 

- 
(yu;)03 = -(yqol, etc. 
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To eliminate r* f'rom the correlation equations, l e t  1 

Substituting Eqs. (92) in to  the correlation equations with independent 

variables 

cients  of rT0 and rT1 give ( w i t h r s ) 0 2  = -(%I.$)~, etc.  ) a set of 

ordinary d i f f e r e n t i d  equations i n  (x2)*. m 

rf and (x2)* (not shown) and equating t o  zero the  coeffi- m - 

Finally, t o  eliminate (xz):, l e t  
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I- 

= 4 k s  + 

Equations (106) and (104) give 

are proportional respectively t o  

Equation (94) emphasizes the importance of the pressure-velocity 

correlations for  shear-flow turbulence. I n  the absence of those correla- 

t ions (3) would be zero (s ince  (s) is proportional t o  
0000 0002 

-(u2u2)0000) 7 and there would be no turbulence. This is not surprising, 

since the  turbulent energy is fed into the  turbulent f i e l d  through the 

u u1 11 

energy by the  pressure-velocity correlation terms. 

- 
component and is distributed between the various components of the  



1 .  . .  
. -  4 

IC c 

- 3 s -  

As i n  the case of thermal turbulence, it is the presence of the  non- 

l inear  or  quadratic terms i n  some of Eqs. (94) t o  (109) that makes possible 

a nonzero solution of those equations. I n  the  absence of those terms the 

equations would be l inear  and homogeneous and, i n  general, would hsve only 

a no-turbulence solution. 
- - 

etc.  l e t  the  microscales asso- 
TO reh te  ( u p ' )  2 0002 to (uzl4)oooO' 

ciated with (xz): i n  Eqs. (93) be equal t a  h by letting, far instance, 
- - 

= -4(u u') 
2 2 0000~ (s)OOo = o f o r  (x,)" = +1/2. This gives (u u t )  

m 2 2 0002 

relat ions we get, when substi tuting Eqs. (961, (981, (loo), (102), (108)~ 

and (110) into (94) ,  

- 
Note tha t  ( ~ u ~ ) o o o o  

equation i n  (ul%) 

Eq. (94), which WBE, origina,lly obtained from Eq. (62) ( the  equation f o r  

s), gives, when combined with the other equations, a solution f o r  

(g)oooo rather than f o r  (%I$) 

cancels out of t h i s  equation leaving a quadratic 

- 
Thus we get the somewhat unexpected result that 

0000 - 

- 
Similarly, Eq. (95) w i l l  give a 

0000- - - 
solution f o r  (u u') ra ther  than  f o r  (yu') Solution of 

2 2 0000 2 0000- 
Eq. (111) gives 

- 
"his equation can give a negative value of 5% fo r  positive M, and 

a positive f o r  negative N,, as it should. However, the  c r i t i c a l  1 2  

Ms (the value of Ms fo r  ( ~ ~ ) o o o o  7 I=: 0)  is  imaginary. Moreover, i f  we 

calculate the eddy diffusivi ty  for  momentum transfer from 
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which i n  dimensionless 

w e  f ind  that Eq. (112) 

form at (3)* becomes 
m 

E* PI - 

will not give a posit ive solution fo r  E as re- 

quired, 

assumed. 

This only indicates that all the microscales cannot be equal as 
- 

If, f o r  instance, w e  t a k e  the  microscale f o r  ( p 4 )  in 
010 

and Eqs. (93) as h/2 instead of h, ve get (p? = -16 (PyJOlO0 7 0 0 1 0 2  

(p%)olo3 - - -16(p~)0101. T If the other microscales are taken equal t o  A, 

where the positive sign is taken for posit ive 

fo r  negative ITs. Equation (114) gives a c r i t i c a l  value of Rs (at which 

(s) - 0) of k75.3. 

a positive eddy diffusivity,  which has the  correct trends with increasing 

M,. Physically realizable results for (u  u and E were also 

Rs and t h e  negative one 

Also, substitution of Eq. (ll4) in to  (115) gives 

- 
- 1 i)oooo - 

obtained by letting the microscales for  ( p 3 )  (soo, and (p9)ooo i n  0' 
Eqs. (91), (92), and (93) be equal to 

equal t o  A as before. 

4h, t he  other microscales being set 

- 
TO obtain ( ~ 2 % )  as a function of N,, we solve Eqs. (103) t o  

0000 

(ll0) and Eq. (114) simultaneously. 

obtaining Eq. (114) were used here. 

was obtained for  (u u' = 0 i n  Eq. (114). For Ns = 2100, 

The values f o r  microscales used f o r  

For ( ~ ~ ) o o o o  P 0, N, 5 k75.3,  as 
- 

- 
1 ~)oooo 
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~ 

l 

, 
as w e l l  as ( ' ~ ) o o o o  and E, has t he  correct trends and signs. Note 

that possible solutions are obtained f o r  e i ther  positive or negative Ns, 

I whereas for  the case of thermal turbulence solutions were  obtained only 

f o r  posit ive Nt. This is t o  be expected, since the turbulence should not 

be affected by the  sign of the shear stress. 

the  other hand, the turbulence should exist only fo r  heat transfer in t h e  

For thermal turbulence, on 

posit ive direction (negative temperature gradients). 

As i n  t he  case of thermal turbulence, the results obtained in the  

preceding paragraphs probably do not correspond numerically t o  those f o r  

particular born- conditions because the  microscale r a t io s  would be 

different.  They are given t o  show that reasonable results can be ob- 

tained f r o m  the  correlation equations. I n  the  general case, Eq. (111) 

can be writ ten as 

where A and a are  functions of the  microscale r a t i o s  (xhich might i n  

turn be weak functions of N,). Solving Eq. (115) fo r  (7) we 
1% OOOO 

get 

- 
For ( p u ~ ) o o o o  = 0, Ns = Thus A and a should both 

posit ive or  negative, a t  least i n  the vicini ty  of (7) P 

1% OOOO 

be e i ther  

0. Com- 

parison of Eq. (ll6) t o  (57)  shows that the expressions f o r  both shear- 

flow and thermal turbulence are solutions of quadratic equations, although 

the forms d i f f e r  somewhat. 
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CONCLUDING REMARKS 

By expanding the two-point nonlinear correlation equations i n  power 

series, reasonable solutions were obtained f o r  both thermal and shear- 

flow turbulence. 

eddy difArsivities had the correct e igm and trends. Moreover, c r i t i c a l  

values of the determining parameters, below which unphysical turbulent 

solutions occurred, were obtained. Below the c r i t i c a l  =lues the no- 

turbulence solution of t he  correlation equations was therefore appro- 

pr ia te .  

could be either turbulent or nonturbulent. For shear-flow turbulence the  

same solutions are obtained for either positive or  negative shear stress, 

whereas f o r  thermal turbulence it was necessary f o r  the heat transfer t o  

be posit ive (negative temperature gradient). 

t o  be expected if the equations yield reasonable solutions. 

obtained would not be expected t o  correspond numerically t o  those f o r  

pa.rticuLar boundary conditions inasmuch as the microscale r a t io s  corre- 

sponding t o  those conditions were not determined. 

would be necessary t o  carry higher order terms i n  the expansions and apply 

the  par t icular  boundary conditions of interest .  The presence of pressure- 

velocity correlations i n  the equations was found t o  be indispensible if 

steady-state shear-flow turbulence is t o  exist. The pressure-velocity 

correlations were  of less importance f o r  thermal turbulence. 

By reasonable it is meant that the correlations and 

Above the  crit1ca.l values the equations showed that the f l u i d  

These results are, of course, 

The results 

To determine those it 



- 39 - 

1. T. von I&mh, and L. Howar th :  Proc. Roy. Soc. (London) Al64, 192 

( 1938. 

2. 0- K. Batchelor: The Theory of Homogeneous Turbulence. (Cambridge 

U n i v e r s i t y  Press, 1953). 

3. R. G. k i56ler :  Phys. Fluids 5 176 (1960). 

4. 3. 0 Hinte: Ru;bulence (McGraw-Hill, 1959). 

5. Turbulent plows  and Heat SPrassfer, Ed, by C, C. Lin. Princeton 

University Press, (1959). 

6 .  T. von Idrm6.n: 

7. W. V. R, Malkw: 

8. J. N. Burgers: 

9. A. A. Tuunsad The Structure of Turbulent Shear Flaw, 

Jour. Aero. Sci., L, 1 (1934). 

Journal of Fluid Mechanics - 1, 521 (19S6). 

Proc. K. Ned. Akad. Wet., - 53 (3) 247-60, 1950. 

( C a m b r i d g e  

University Press, 1956). 

* 10. R. G. ~eissler:  phys. mads, 3 1187 (1961). 

11. R. G. Deissler: J. Geophys. Res. - 67, 3049 (1962). 

12. The action in sustained turbulence is ~omewh&t sirnilas t o  t h a t  of a 

clock, a v io l in  bow, or an electronic osc i l la tor  in that i n  each of 

these a steady f l o w  of energy is converted into osc i l la t ing  energy 

by a nonlinear mechanism. 

course, i n  that its motion is randm aad has an infinite number of 

Turbulence d i f fe rs  f r o m  the others, of 

degrees of freedom. 



P' 

Figure 1. - Vector configuration for  two-point 
correlation equ2tions. 
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